Cooperativity, partially bound states, and enthalpy-entropy compensation.
نویسندگان
چکیده
Efforts to develop a quantitative understanding of molecular recognition rely on the additivity of individual intermolecular interactions, and cooperativity represents one of the major potential stumbling blocks. A chemical double-mutant cycle has been used to experimentally measure cooperativity between functional group interactions within a complex framework. The interaction between two aromatic groups varies by 0.2 +/- 0.4 kJ mol(-1) in synthetic H-bonded complexes that differ by 8-13 kJ mol(-1) in overall stability. In these systems, the free energies associated with individual intermolecular interactions can therefore be reliably treated in an additive fashion. The results suggest that alternative explanations should be considered for cooperative phenomena observed in other systems, and a rationale based on the population of partially bound states in flexible molecules is proposed to account for the enthalpic chelate effect and enthalpy-entropy compensation.
منابع مشابه
Conductometric Study of the Thermodynamics of Micellization of Sodium dodecylsulfate (SDS) in the Presence of Some Aromatic Ammonium Salts
The effect of three organic aromatic salts - Phenyltrimethylammonium (PhTMAB), benzyltrimethylammonium (BzTMAB) and benzyltrimethylammonium (BzTEAB) bromides - on the micellization of sodium dodecylsulfate has been investigated by conductometric method. The critical micelle concentration (CMC) values were found to decrease with increase in the concentration of the aromatic ammonium salts. Therm...
متن کاملExtreme entropy-enthalpy compensation in a drug-resistant variant of HIV-1 protease.
The development of HIV-1 protease inhibitors has been the historic paradigm of rational structure-based drug design, where structural and thermodynamic analyses have assisted in the discovery of novel inhibitors. While the total enthalpy and entropy change upon binding determine the affinity, often the thermodynamics are considered in terms of inhibitor properties only. In the current study, pr...
متن کاملElucidating protein thermodynamics from the three-dimensional structure of the native state using network rigidity.
Given the three-dimensional structure of a protein, its thermodynamic properties are calculated using a recently introduced distance constraint model (DCM) within a mean-field treatment. The DCM is constructed from a free energy decomposition that partitions microscopic interactions into a variety of constraint types, i.e., covalent bonds, salt-bridges, hydrogen-bonds, and torsional-forces, eac...
متن کاملWater networks contribute to enthalpy/entropy compensation in protein-ligand binding.
The mechanism (or mechanisms) of enthalpy-entropy (H/S) compensation in protein-ligand binding remains controversial, and there are still no predictive models (theoretical or experimental) in which hypotheses of ligand binding can be readily tested. Here we describe a particularly well-defined system of protein and ligands--human carbonic anhydrase (HCA) and a series of benzothiazole sulfonamid...
متن کاملRole of hydrogen bonding in the interaction between a xylan binding module and xylan.
NMR studies of the internal family 2b carbohydrate binding module (CBM2b-1) of Cellulomonas fimi xylanase 11A have identified six polar residues and two aromatic residues that interact with its target ligand, xylan. To investigate the importance of the various interactions, free energy and enthalpy changes have been measured for the binding of xylan to native and mutant forms of CBM2b-1. The da...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry & biology
دوره 10 11 شماره
صفحات -
تاریخ انتشار 2003